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Fic. 4. Standard (112) stereographic projection of cubic crystal.

Eq. (28) means that the [001] is a hard direction for
L.F. deformation, so that the easy direction on the
(110) plane is along the [110] rolling direction. There
is no anisotropy from S.C. deformation, Eq. (29).

(¢) (111) [112] Rolling

The specimen coordinate system specifies «’—[111],
y'—[1107, and z’—[112]. The transformation matrix is

x ¥ z
1 1 1
X sl ] e
V3 V2 V6
1 1
Y = = - ey
V3 V2 o)
1 2
VA — 0 -
V3 V6.
Hence
€x=—1/6, e€yu=—1/6, €.=1/3,
€=€,=—2r/3, €,=—1/6. (30)

From Fig. 2, the active slip systems based on the Tucker
criterion are (4), (5), (7), and (12). Then

2€,:=S4+S57— S,

NSy S

2¢,.=—Si—Ss, (31)
4€yz= S4+S7+Sl2,
4e;.=S5+S57+ 512,

desy=S1+Ss.

Solution of (30) and (31) gives

Si=Ss=—(r/3), S:=S1=—(7/6)r. (32)
Hence
Err= (1/48)K ryr[ (s —csas—azan) + 7 (i—az)?]. (33)

The second term inside the brackets dominates and
places the hard direction at [110], which is transverse
to the [112] rolling direction. Similarly,

Esc= = (1/144)Ksc1’ (2a2a3+2a3a1+5a1a2). (34)
Calculation based on Eq. (34) shows that the hard
direction on the rolling plane is again [110].

(@) (112) [110] Rolling

The specimen coordinate axes are: a’—[112],
y'—[111], and z’—[110], Fig. 4. The transformation
matrix is

X ¥ 2
1 1 i)

X foa L o T
Vo V3 V2
1 1 1

)4 - — ——
V6 V3 V2
2 1

Z — 0
) V3 ;

Hence
€:=7/3, /3, €x=—2/3,

e.=—1/3, €.,=—1/3, ey=—2r/3. (35)
Although Fig. 4 shows that (111) [011] and (i11)
[101] [Nos. (9) and (11)] are the most likely systems
to operate according to the Tucker criterion, they are
not enough to satisfy the strain equations (35). Addi-
tional slip on the cross-slip systems (111) [101] and

(111) [011] [Nos. (4) and (5)] may_then be assumed.
Thus

2€:.=S4+—Su,
2€,,=S5—.S,
2e,,=—S4— 55+59+Su, (36)
4€yz=54+511,
de..= 55135,
4ezy=S4+S.’)+59+511-
Solution of Egs. (35) and (36) gives

S4=S5=—(7’/3), Sg=511=f. (37)
Hence

Evr= (1/48)K 1or Bas— Toasas— Tases).  (38)

On the rolling (112) plane, Err is minimum along the
[110] rolling direction. Likewise,

Eso=— (1/72)Kscr (asas+asont2amas).  (39)
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TaBLE II. Summary of calculated anisotropy energies based on slip-induced directional order theory.

A. Wire drawing
WA

Evy Easy axis Esc Easy axis
1. (001) (Kvrrr/16)as? 1WA 0
2. (111) — (K 1rr/8) (aua sy p-agan) WA — (Ksor/48) (s +ages +age;) WA
B. Rolling
RP RD Evy Easy axis on RP Esc Easy axis on RP
1. (001)[100]* a. — éKLFI/S)u:’ TD a. 0 cee
b. — (KvLrr/8)as? TD b. (Kscr/24)ass ~TD
2. (001)[110]* a. (Kvrrr/16)as? see a. (Kser/24)aas TD
b. — (Kvr¥r?/4)cos*d RD b. [Kscr(1 —2r)/24]cos% TD
3. (110)[001]* a. (Kr¥r/16)as? T a. (Kscr/24)ajas TD
b. (Kvrr/16)as? TD b. (Kscr/24)eas TD
4. (110)[T12]> a. (Krrr/24)[ (a1 +ag)?+ (a2 —a5)?] [111 % 20°from RD a. (Kscr/36)aias [110], 55° from RD
b. (SKLrr/48)[ (e1+as)?+ (a2 —ag)?] [111],20°from RD b. (Ksor/72) (2eas —agag 4-azay) near [111],25° from RD
5. (110)[110] (KL¥r/8)as? RD 0
6. (111)[112] ~(7KvLyr/48) (ay —ag)? RD — (Kscr/144) (2asa; 42050, +5a1a9) RD
7. (112)[T10]> a. (KLrr/24) (as®—2aag —2asw) RD a. —(Kscr/36)aas TD
b. (KL¥r/48) (3as® —Tazas —Taz;) RD b. — (Kscr/72) (asas +age +20103) TD
8. (112)[111] (K rrr/48) [ (a1 4-s)? 4 (az4-as)? 47 (a1 —as)?] RD (Kscr/144) (2asny 420500, —5aay) RD

s These three cases have been analyzed and studied by CSL5 a, calculation based on homogeneous slip; b, based on observed slip. »
b a, calculation based on slip on systems of maximum effective Schmid factor; b, based on additional slip systems to achieve strain compatibility. WA
wire axis; RP, rolling plane; RD, rolling direction; TD, transverse direction.

On the (112) plane, Esc is maximum along [110].
Hence this anisotropy opposes that obtained from L.F.
deformation. If only systems (9) and (11) operate,
despite strain incompatibility,

Evpp= (1/24)K ryr (a8’ — 2as05— 2a301) (40)
and
Esc=— (1/36)K scrazas. (41)

The predicted easy directions on (112) are thus the
same as the four slip system case.

(e) (112) [111] Rolling

The specimen coordinate axes are now a'— 2
y'—[1107], and 2'—[111], Fig. 4. The transformation
matrix is

¥ y z
1 1 1
e e R
v6 V2 43
1 1 1
P, e S
v6 V2 43
2 1
I s 0 =
V6 V3

and
=10, =106, e ——7/3,

r=—2r/3, €.=—2r/3, ey=1/6. (42)

The operating slip systems are most likely (111) [oi1],
(111) [1017], (111) [110], and (111) [110], or Nos. (1),

(2), (7), and (12). Then
2€z.=—S21+S57—S13,
2eyy=—81—S7+ 512,
2€,.=51+S3, (43)
dey.=So+S7+S12,
de..=S11+S571+S12,
dezy=—51—3>.

Solution of Eqs. (42) and (43) gives

S1=S2=—(r/3), S1=S12=—(7/6)r. (44)
Hence

Eypp= (1/48)[(1,1#’[ (C!1+Ola)2
+ (@otas)? +7(@i—a)*].  (45)

Equation (45) tells us that on the (112) rolling plane
the [111] direction (rolling direction) is the easy axis.
Similarly,

Esc= (1/144) K sor Qasas+ 20301 — Saners),  (46)

which again places the easy direction at [111] as far as
the (112) rolling plane is concerned.

DISCUSSION

The results of the preceding calculations are sum-
marized in Table II, together with the three cases
studied by Chikazumi et al.® The positions of the
induced easy axis on the rolling plane are indicated.
These positions are perhaps the most significant pre-
dictions of the theory, for they can be checked con-
veniently by magnetic torque measurements on a disk




